Skip To The Main Content

Caracteristics of advanced ceramics

Ceramaret advanced ceramic high-precision components enhance the quality and prolong the life of your products.

Ceramic components generally exhibit excellent mechanical properties, extreme hardness, and proven wear and heat resistance, while at the same time remaining relatively lightweight. In addition, these components are excellent electrical and thermal insulators. Chemically inert, ceramic components are resistant to chemical attack and guarantee biocompatibility to the medical and food industries. 

In comparison to other materials, advanced ceramic components deliver unmatched performance and enhance the product's overall performance. 
 
 Discover Ceramaret applications
 The advantages of advanced ceramics

Oxide ceramics 

Aluminum oxide or alumina (Al2O3)

High purity commercial alumina (99,9% A1203) has a hexagonal or rhombic crystal structure, with a grain size between 1-5 microns, density from 3.75 to 3.95 g/cm³ and Vickers hardness value of about 2000.

Alumina AL2O3 Surface Structure
The principal properties of alumina Al2O3 include:
  • Excellent electrical insulation
  • Extreme hardness
  • Compressive strength
  • High mechanical strength
  • Low thermal conductivity 
  • Low thermal expansion
  • Excellent resistance to corrosion and wear
  • Excellent tribological properties 
  • Good biocompatibility

Alumina 96% (Al2O3) properties                               Material sheet (pdf)

Units Values
General
Density g.cm-3 3.75
Water absorption % 0
Gas permeability % 0
Color  - White
Structure - Polycrystalline
   Average grain size µm   4±1
 
Mechanical
Bend strength 20°C MPa 300
Weibull modulus - 13
Compressive strength MPa 2500
K1c MPa.m1/2 4
Young's Modulus GPa 350
Poisson's ratio - 0.23
Vickers hardness Hv 1500
 
Thermal
Conductivity 20°C W.m-1.k-1 20
Conductivity 1000°C W.m-1.k-1
Coefficient of linear thermal expansion
20-100°C 10-6.k-1
20-400°C 10-6.k-1 7.6
20-600°C 10-6.k-1
20-1000°C 10-6.k-1 8.8
Specific heat 20°C kJ.kg-1.k-1 0.9
Maximum use temperature
Oxygen °C 1200
Inert °C 1200
 
Electrical
Resistivity 25°C Ω.cm 1.1015
Resistivity 400°C Ω.cm 1.108
Dielectric strength kV.mm-1 17
Dielectric constant - 8 (1MHz)
Tan δ - 5.10-3 (9GHz)
Alumina 99.7% (Al2O3) properties                            Material sheet (pdf)

Units Values
General
Density g.cm-3 3.85
Water absorption % 0
Gas permeability % 0
Color  - Ivory
Structure - Polycrystalline
   Average Grain Size µm  4±2
 
Mechanical
Bend strength 20°C MPa 400
Bend strength 1000°C MPa
Weibull modulus - 14
Compressive strength MPa 3500
K1c MPa.m1/2 4
Young's Modulus GPa 400
Poisson's ratio - 0.23
Vickers hardness Hv 1700
 
Thermal
Conductivity 20°C W.m-1.k-1 25
Conductivity 1000°C W.m-1.k-1
Coefficient of linear thermal expansion
20-100°C 10-6.k-1
20-400°C 10-6.k-1 7.5
20-600°C 10-6.k-1
20-1000°C 10-6.k-1 8.7
Specific heat 20°C kJ.kg-1.k-1 0.9
Maximum use temperature
Oxygen °C 1500
Inert °C 1500
 
Electrical
Resistivity 25°C Ω.cm 1.1014
Resistivity 400°C Ω.cm 5.108
Dielectric strength kV.mm-1 18
Dielectric constant - 9 (1MHz)
Tan δ   - 5.10-3 (9GHz)
Alumina 99.9% (Al2O3) properties                            Material sheet (pdf)

Units Values
General
Density g.cm-3 3.95
Water absorption % 0
Gas permeability % 0
Color - Ivoiry-white
Structure - Polycrystalline
  Average grain size µm  3±1
 
Mechanical
Bend strength 20°C MPa 500
Weibull modulus - 15
Compressive strength MPa 4000
K1c MPa.m1/2 4
Young's Modulus GPa 400
Poisson's ratio - 0.23
Vickers hardness Hv 1900
 
Thermal
Conductivity 20°C W.m-1.k-1 30
Conductivity 1000°C W.m-1.k-1
Coefficient of linear thermal expansion
20-100°C 10-6.k-1
20-400°C 10-6.k-1 7.5
20-600°C 10-6.k-1
20-1000°C 10-6.k-1 8.5
Specific heat 20°C kJ.kg-1.k-1 0.9
Maximum use temperature
Oxygen °C 1500
Inert °C 1500
 
Electrical
Resistivity 25°C Ω.cm 5.1014
Resistivity 400°C Ω.cm 5.108
Dielectric strength kV.mm-1 19
Dielectric constant - 9 (1MHz)
Tan δ   - 5.10-3 (9GHz)
Hipped Alumina 99.9% (Al2O3) properties               Material sheet (pdf)

Units Values
General
Density g.cm-3 3.97
Water absorption % 0
Gas permeability % 0
Color - translucent 
Structure - Polycrystalline
  Average grain size µm  3±1
 
Mechanical
Bend strength 20°C MPa 500
Weibull modulus - 16
Compressive strength MPa 4000
K1c MPa.m1/2 5
Young's Modulus GPa 400
Poisson's ratio - 0.23
Vickers hardness Hv 1900
 
Thermal
Conductivity 20°C W.m-1.k-1 30
Conductivity 1000°C W.m-1.k-1
Coefficient of linear thermal expansion
20-100°C 10-6.k-1
20-400°C 10-6.k-1 7.5
20-600°C 10-6.k-1
20-1000°C 10-6.k-1 8.5
Specific heat 20°C kJ.kg-1.k-1 0.9
Maximum use temperature
Oxygen °C 1500
Inert °C 1500
 
Electrical
Resistivity 25°C Ω.cm 5.1014
Resistivity 400°C Ω.cm 5.108
Dielectric strength kV.mm-1 19
Dielectric constant - 9 (1MHz)
Tan δ   - 5.10-3 (9GHz)

Zirconium oxide or zirconia  (ZrO2)

Yttria-stabilized zirconia (ZrO2 + Y2O3) has a tetragonal crystal structure with a grain size not exceeding 0.50 microns, density greater than 6,00 g/cm³, and a Vickers hardness value of about 1200. According to the technical requirements and materials properties, ceria-stabilized zirconia (ZrO2 + CeO2) or magnesia-stabilized zirconia (ZrO2 + MgO) are also an option.

Zirconia ZrO2 surface strucuture
The principal properties of zirconia ZrO2 include:
  • High mechanical strength
  • Fracture toughness
  • Extreme hardness
  • Compressive strength
  • Low thermal conductivity
  • Excellent resistance to corrosion and wear
  • Excellent tribological properties
  • Good biocompatibility
Zirconium oxide ZrO2-3Y-TZP properties                           Material sheet (pdf)

Units Values
General
Density g.cm-3 6.06
Water absorption % 0
Gas permeability % 0
Color  - White /black
Structure - Polycrystalline
  Average grain size µm   0.5±0.1
 
Mechanical
Bend strength 20°C MPa 1200
Weibull modulus - 10
Compressive strength MPa 2200
K1c MPa.m1/2 8
Young's Modulus GPa 210
Poisson's ratio - 0.3
Vickers hardness Hv 1200
 
Thermal
Conductivity 20°C W.m-1.k-1 2.5
Conductivity 1000°C W.m-1.k-1
Coefficient of linear thermal expansion
20-100°C 10-6.k-1
20-400°C 10-6.k-1 10
20-600°C 10-6.k-1
20-1000°C 10-6.k-1 11.7
Specific heat 20°C kJ.kg-1.k-1 0.4
Maximum use temperature
Oxygen °C 1000
Inert °C 1000
 
Electrical
Resistivity 25°C Ω.cm 1.1012
Resistivity 400°C Ω.cm 104
Dielectric strength kV.mm-1 19
Dielectric constant - 29 (1MHz)
Tan δ - 2.10-3 (1GHz)
Hipped Zirconium oxide ZrO2-3Y-TZP properties              Material sheet (pdf)

Units Values
General
Density g.cm-3 6.07
Water absorption % 0
Gas permeability % 0
Color  - White
Structure - Polycrystalline
  Average grain size µm   0.5±0.1
 
Mechanical
Bend strength 20°C MPa 1700
Weibull modulus - 18
Compressive strength MPa 2000
K1c MPa.m1/2 9
Young's Modulus GPa 210
Poisson's ratio - 0.3
Vickers hardness Hv 1300
 
Thermal
Conductivity 20°C W.m-1.k-1 2.5
Conductivity 1000°C W.m-1.k-1
Coefficient of linear thermal expansion
20-100°C 10-6.k-1
20-400°C 10-6.k-1 10
20-600°C 10-6.k-1
20-1000°C 10-6.k-1 11.7
Specific heat 20°C kJ.kg-1.k-1 0.4
Maximum use temperature
Oxygen °C 1000
Inert °C 1000
 
Electrical
Resistivity 25°C Ω.cm 1.1012
Resistivity 400°C Ω.cm 104
Dielectric strength kV.mm-1 19
Dielectric constant - 29 (1MHz)
Tan δ - 2.10-3 (1GHz)
Zirconium oxide ZrO2-Mg-PSZ properties                          Material sheet (pdf)

Units Values
General
Density g.cm-3 5.74
Water absorption % 0
Gas permeability % 0
Color  - Orange
Structure - Polycrystalline
   Average grain size µm  20±5 
 
Mechanical
Bend strength 20°C MPa 400
Weibull modulus - 25
Compressive strength MPa 1600
K1c MPa.m1/2 8
Young's Modulus GPa 210
Poisson's ratio - 0.3
Vickers hardness Hv 1200
 
Thermal
Conductivity 20°C W.m-1.k-1 3
Conductivity 1000°C W.m-1.k-1
Coefficient of linear thermal expansion
20-100°C 10-6.k-1
20-400°C 10-6.k-1 10
20-600°C 10-6.k-1
20-1000°C 10-6.k-1 11
Specific heat 20°C kJ.kg-1.k-1 0.4
Maximum use temperature
Oxygen °C 850
Inert °C 850
 
Electrical
Resistivity 25°C Ω.cm 5.1012
Resistivity 400°C Ω.cm 105
Dielectric strength kV.mm-1 19
Dielectric constant - 27 (1MHz)
Tan δ   - 2.10-3 (1GHz)
Zirconium oxide ZrO2-Ce-TZP properties                           Material sheet (pdf)

Units Values
General
Density g.cm-3 6.2
Water absorption % 0
Gas permeability % 0
Color  - Light yellow
Structure - Polycrystalline
  Average grain size µm  1±0.5 
 
Mechanical
Bend strength 20°C MPa 600
Weibull modulus - 10
Compressive strength MPa 2000
K1c MPa.m1/2 8
Young's Modulus GPa 200
Poisson's ratio - 0.25
Vickers hardness Hv 800
 
Thermal
Conductivity 20°C W.m-1.k-1 3.5
Conductivity 1000°C W.m-1.k-1
Coefficient of linear thermal expansion
20-100°C 10-6.k-1
20-400°C 10-6.k-1 9
20-600°C 10-6.k-1
20-1000°C 10-6.k-1 10
Specific heat 20°C kJ.kg-1.k-1
Maximum use temperature
Oxygen °C 500
Inert °C 500
 
Electrical
Resistivity 25°C Ω.cm 5.1013
Resistivity 400°C Ω.cm 106
Dielectric strength kV.mm-1 25
Dielectric constant - 30 (1MHz)
Tan δ   - 1.10-3 (1MHz)

Alumina-Zirconia Composites

  • The composites, generally 80% 3Y-TZP / 20% Al2O3 (ATZ) or 90% Al2O3/ 10% 3Y-TZP (ZTA), combine the properties of high purity alumina and zirconia to obtain final properties representing the best each material has to offer.
ATZ surface strucuture
The principal properties of ATZ (Alumina Toughened Zirconia) include:
  • Hardness
  • Resistance to wear
  • Better ageing resistance
  • Mechanical strength and fracture toughness close to standard 3Y-TZP   

ATZ 80% 3Y-TZP-20%Al2O3 properties                                 Material sheet (pdf)

Units Values
General
Density g.cm-3 5.40
Water absorption % 0
Gas permeability % 0
Color  - White
Structure - Polycrystalline
   Average grain size µm  0.5±0.1
 
Mechanical
Bend strength 20°C MPa 1000
Weibull modulus - 15
Compressive strength MPa 2500
K1c MPa.m1/2 5
Young's Modulus GPa 250
Poisson's ratio - 0.26
Vickers hardness Hv 1400
 
Thermal
Conductivity 20°C W.m-1.k-1 10
Conductivity 1000°C W.m-1.k-1
Coefficient of linear thermal expansion
20-100°C 10-6.k-1
20-400°C 10-6.k-1 9
20-600°C 10-6.k-1
20-1000°C 10-6.k-1
Specific heat 20°C kJ.kg-1.k-1 0.5
Maximum use temperature
Oxygen °C 1000
Inert °C 1000
 
Electrical
Resistivity 25°C Ω.cm  
Resistivity 400°C Ω.cm  
Dielectric strength kV.mm-1  
Dielectric constant -  
Tan δ -
Hipped ATZ 80% 3Y-TZP-20%Al2O3 properties                    Material sheet (pdf)

Units Values
General
Density g.cm-3 5.43
Water absorption % 0
Gas permeability % 0
Color  - White
Structure - Polycrystalline
   Average grain size µm  0.5±0.1
 
Mechanical
Bend strength 20°C MPa 1600
Weibull modulus - 15
Compressive strength MPa 2500
K1c MPa.m1/2 5
Young's Modulus GPa 250
Poisson's ratio - 0.26
Vickers hardness Hv 1400
 
Thermal
Conductivity 20°C W.m-1.k-1 10
Conductivity 1000°C W.m-1.k-1
Coefficient of linear thermal expansion
20-100°C 10-6.k-1
20-400°C 10-6.k-1 9
20-600°C 10-6.k-1
20-1000°C 10-6.k-1
Specific heat 20°C kJ.kg-1.k-1 0.5
Maximum use temperature
Oxygen °C 1000
Inert °C 1000
 
Electrical
Resistivity 25°C Ω.cm  
Resistivity 400°C Ω.cm  
Dielectric strength kV.mm-1  
Dielectric constant -  
Tan δ -
ZTA2 ATZ surface strucuture

The principal properties of ZTA (Zirconia Toughened Alumina) include:

  • Mechanically strengthening alumina through the phase transformation of zirconia grains inside the alumina matrix
  • Excellent thermal shock resistance
  • No aging degradation 
ZTA 90% Al2O3-10%3Y-TZP properties                               Material sheet (pdf)

Units Values
General
Density g.cm-3 4.13
Water absorption % 0
Gas permeability % 0
Color  - White
Structure - Polycrystalline
  Average grain size µm 3±1
 
Mechanical
Bend strength 20°C MPa 600
Weibull modulus - 17
Compressive strength MPa 4000
K1c MPa.m1/2 5
Young's Modulus GPa 380
Poisson's ratio - 0.25
Vickers hardness Hv 1800
 
Thermal
Conductivity 20°C W.m-1.k-1 20
Conductivity 1000°C W.m-1.k-1
Coefficient of linear thermal expansion
20-100°C 10-6.k-1
20-400°C 10-6.k-1 8
20-600°C 10-6.k-1
20-1000°C 10-6.k-1
Specific heat 20°C kJ.kg-1.k-1 0.9
Maximum use temperature
Oxygen °C 1000
Inert °C 1000
 
Electrical
Resistivity 25°C Ω.cm 1014
Resistivity 400°C Ω.cm 109
Dielectric strength kV.mm-1
Dielectric constant - 10 (1MHz)
Tan δ   -
  • Alumina Platelet Toughened Zirconia (APTZ) composites are special types of ATZ in which the alumina is in platelet form. The zirconia is also stabilised with cerium (rather than the usual yttrium).
ZTA2 ATZ surface strucuture

Main properties of HT APTZ (High Toughness Alumina Platelet Toughened Zirconia):

  • Shock resistant
  • High tenacity
  • Hard


 

 Ce-Y stabilised Zirconia 85% 3Y-TZP-15%Al2O3 properties                        Material sheet (pdf)

Units Values
General
Density g.cm-3 5.70
Water absorption % 0
Gas permeability % 0
Color - Brown
Structure - Polycrystalline
  Average grain size µm  0.5±0.1
 
Mechanical
Bend strength 20°C MPa 1000
Weibull modulus - 15
Compressive strength MPa 2500
K1c MPa.m1/2 12
Young's Modulus GPa 250
Poisson's ratio - 0.26
Vickers hardness Hv 1200
 
Thermal
Conductivity 20°C W.m-1.k-1
Conductivity 1000°C W.m-1.k-1
Coefficient of linear thermal expansion
20-100°C 10-6.k-1
20-400°C 10-6.k-1
20-600°C 10-6.k-1
20-1000°C 10-6.k-1
Specific heat 20°C kJ.kg-1.k-1
Maximum use temperature
Oxygen °C 1000
Inert °C 1000
 
Electrical
Resistivity 20°C Ω.cm
Resistivity 400°C Ω.cm
Dielectric strength kV.mm-1
Dielectric constant -
Tan δ -
Note Shock resistant    

Silicon Carbide

Silicon Carbide

Polycrystalline silicon carbide (SiC) can outperform oxide ceramics in some key areas, including high temperature applications, wear parts, or electronic and optoelectronic components.

Silicium Carbide surface strucuture

The principal properties of silicon carbide include:

  • Lightness
  • Extreme hardness
  • Good fatigue resistance
  • High thermal conductivity
  • Low coefficient of thermal expansion
  • High chemical inertia
Silicon carbide (sSiC) properties                                    Material sheet (pdf)

Unit Value
General
Density g.cm-3 3.1
Water Adsorption % 0
Gaz permeability % 0
Color - Black
Structure - Polycristal
  Average grain size µm  -
 
Mechanical
Bending strength 20°C MPa 400
Weibull Modulus - 12
Compression strenght MPa 2000
K1c MPa.m1/2 4
Young Modulus GPa 400
Poisson ratio - 0.15
Hardness Vickers Hv 2200
 
Thermal
Conductivity 20°C W.m-1.k-1 100
Conductivity 1000°C W.m-1.k-1
Linear thermal expansion coeff.
20-100°C 10-6.k-1
20-400°C 10-6.k-1 3.5
20-600°C 10-6.k-1
20-1000°C 10-6.k-1 5
Specific heat 20°C kJ.kg-1.k-1 0.6
Temperature max
Oxygen °C 1400
Inert °C 1800
 
Electrical
Resistivity 25°C Ω.cm 5.107
Resistivity 400°C Ω.cm 1.101
Dielectric strength kV.mm-1 0
Permittivity -
Tan δ - 4.10-3 (1GHz)

Silicon Nitride

Silicon Nitride

Polycrystalline silicon nitride (Si3N4) can outperform oxide ceramics in some key areas, including high temperature applications, wear parts, or electronic and optoelectronic components.

Silicium Carbide surface strucuture

The principal properties of silicon carbide include:

  • Lightness
  • Good fatigue resistance
  • Medium thermal conductivity
  • Low coefficient of thermal expansion
  • High chemical inertia
Silicon nitride (Si3N4) properties                                     Material sheet (pdf)
Units Values
       
General
Density g.cm-3 3.21
Water Absorption % 0
Gaz permeability % 0
Color - Grey
Structure - Polycristal
  Average grain size µm 
 
Mecanical
Bending strenght 20°C MPa 850
Weibull modulus 16
Compression strength MPa 3000
K1c MPa.m1/2 7
Young modulus GPa 300
Poisson ratio - 0.25
Hardness Vickers Hv 1600
 
Thermal
Conductivity 20°C W.m-1.k-1 20
Conductivity 1000°C W.m-1.k-1
Linear thermal expansion coeff.
20-100°C 10-6.k-1
20-400°C 10-6.k-1 3.2
20-600°C 10-6.k-1
20-1000°C 10-6.k-1 4.3
Specific heat 20°C kJ.kg-1.k-1 0.7
Temperature max
Oxygen °C 1300
Inert °C 1600
 
Electrical
Resistivity 25°C Ω.cm 1.1014
Resistivity 400°C Ω.cm 1.1010
Dielectric strenght kV.mm-1 19
Permittivity - 8 (1MHz)
Tan δ -  

Synthetic ruby and sapphire

Ruby / Sapphire

Synthetic rubies and sapphires are single-crystal aluminum oxides, practically pure for the sapphire (+99,99% Al2O3). The color of the ruby is produced by adding a few ppm (parts per million) of chromium oxide (CrO3). Synthetic rubies and sapphires have a hexagonal-rhombic crystal structure, density of 3.99 g/cm³ and a water absorption coefficient of 0%.

Saphire surface strucuture

The principal properties of synthetic rubies and sapphires include:

  • Hardness and high mechanical strength
  • Excellent resistance to wear
  • Very low friction coefficient
  • Chemically inert
  • Good thermal conductivity
  • Ideal electrical insulation
In addition, synthetic sapphires are optically transparent in the ultraviolet-visible-near infrared (UV-Vis-NIR) range. 
Ruby / Sapphire properties                                                Material sheet (pdf)

Units Values
General
Density g.cm-3 3.99
Water absorption % 0
Gas permeability % 0
Color  - transparent/red
Structure - Monocristal
  Average grain size µm
 
Mechanical
Bend strength 20°C MPa 200
Weibull modulus -
Compressive strength MPa 2000
K1c MPa.m1/2
Young's Modulus GPa 400
Poisson's ratio -
Vickers hardness Hv 2000
 
Thermal
Conductivity 20°C W.m-1.k-1
Conductivity 1000°C W.m-1.k-1
Coefficient of linear thermal expansion
20-100°C 10-6.k-1
20-400°C 10-6.k-1 6
20-600°C 10-6.k-1
20-1000°C 10-6.k-1
Specific heat 20°C kJ.kg-1.k-1 0.4
Maximum use temperature
Oxygen °C 1500
Inert °C 1500
 
Electrical
Resistivity 20°C Ω.cm 109
Resistivity 400°C Ω.cm
Dielectric strength kV.mm-1
Dielectric constant -
Tan δ   -
Hipped Polycristalline Ruby properties                             Material sheet (pdf)

Units Values
General
Density g.cm-3 3.99
Water absorption % 0
Gas permeability % 0
Color  - Rubis 
Structure - Polycristal
  Average grain size µm 3±1
 
Mechanical
Bend strength 20°C MPa 600
Weibull modulus -
Compressive strength MPa 4000
K1c MPa.m1/2 4
Young's Modulus GPa 400
Poisson's ratio - 0.23
Vickers hardness Hv 2000
 
Thermal
Conductivity 20°C W.m-1.k-1 30
Conductivity 1000°C W.m-1.k-1
Coefficient of linear thermal expansion
20-100°C 10-6.k-1
20-400°C 10-6.k-1 7.5
20-600°C 10-6.k-1
20-1000°C 10-6.k-1 8.5
Specific heat 20°C kJ.kg-1.k-1 0.9
Maximum use temperature
Oxygen °C 1000
Inert °C 1000
 
Electrical
Resistivity 25°C Ω.cm
Resistivity 400°C Ω.cm
Dielectric strength kV.mm-1
Dielectric constant -
Tan δ   -